

PrioritEE PLUS

Transferring the PrioritEE Decision Support Tool to public

authorities in the MED area

João Pedro Gouveia

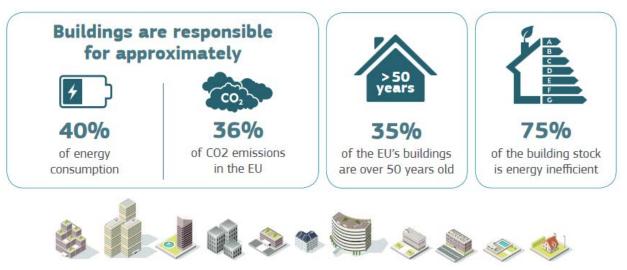
CENSE, FCT-NOVA (jplg@fct.unl.pt)

Conferência Arrudalab, 7th June 2021

Mr. France

Context

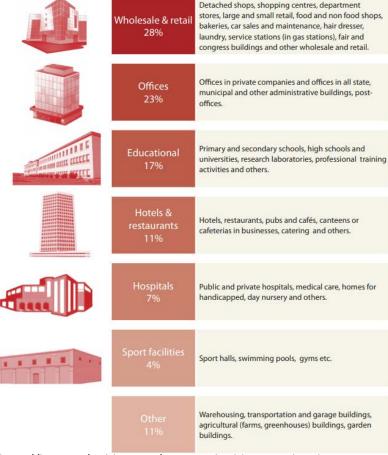
INTERREG


The PrioritEE approach

PrioriTEE PLUS

Climate Change, Energy and Buildings

Energy dependence and an increasing concern about climate change are currently major challenges faced by EU countries. Energy efficiency (EE) is a privileged driver to reduce EU energy and climate vulnerability.



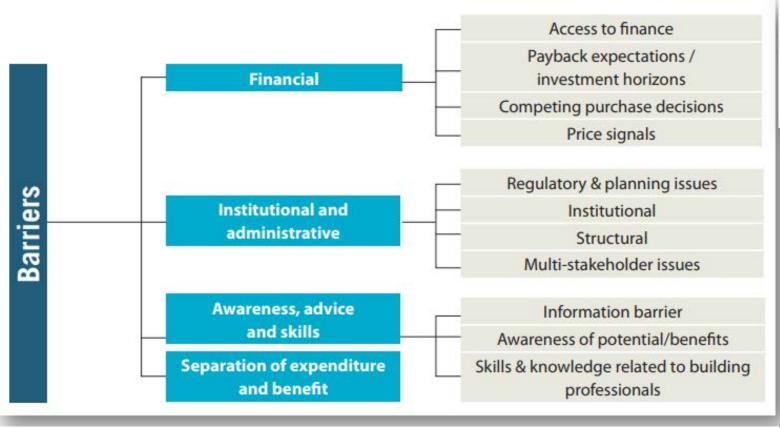
https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/clean-energy-all-europeans

Only <u>0.4-1.2%</u> (depending on the country) of the stock <u>is renovated</u> each year.

More renovation of existing buildings has the potential to lead to significant potential *energy savings* (-<u>5-6% of the EU's total energy consumption</u> and - 5% of <u>CO2 emissions</u>)

The non-residential sector in Europe

http://bpie.eu/publication/europes-buildings-under-the-microscope/



Main Barriers affecting building renovation

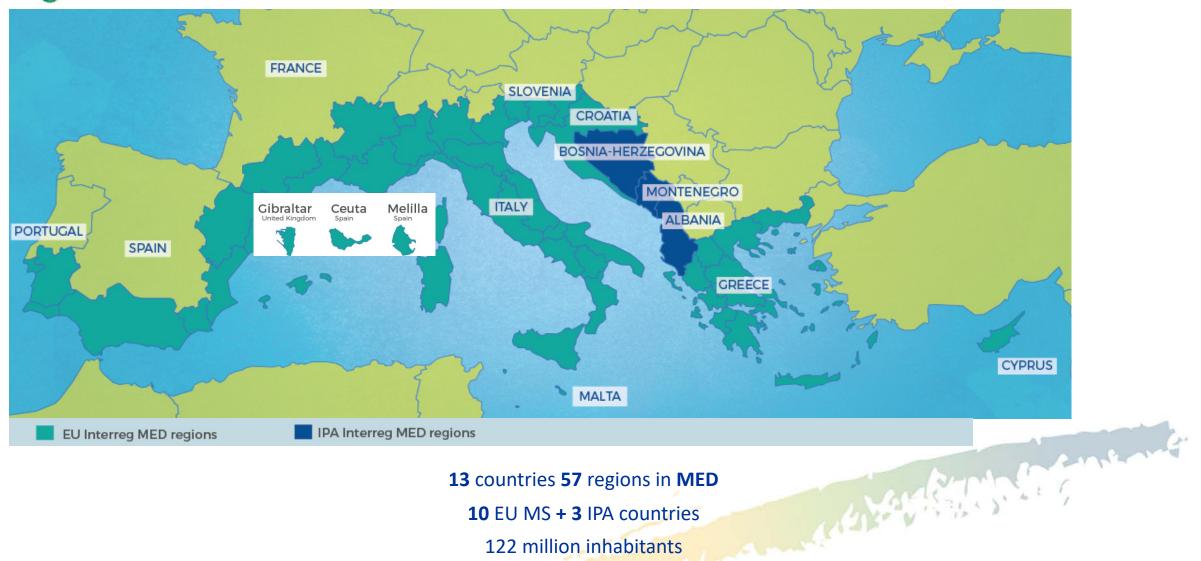
http://bpie.eu/publication/europes-buildings-under-the-microscope/

CHALLENGES

Public authorities have to manage varied building stocks - need to enhance their institutional capacity in the field of EE and use of RES

(obligations under EPBD and the EED)

Supply chain


Quality of workmanship

Technical failure

Disturbance

13 countries 57 regions in MED

10 EU MS + 3 IPA countries

122 million inhabitants

860 000 km² **15 000 km** coastal area

Interreg MED priorities

Thematic priority axes

PRIORITY AXIS 1:

Promoting
Mediterranean
innovation
capacities to
develop smart
and sustainable
growth

PRIORITY AXIS 2:

Fostering low carbon strategies and energy efficiency in specific MED territories: cities, islands and rural areas

PRIORITY AXIS 3:

Protecting and promoting Mediterranean natural and cultural resources areas

PRIORITY AXIS 4:

Enhancing Mediterranean Governance

Axis 2 – Low Carbon Economy

	To raise capacity for better management of energy in Public Buildings at transnational level
Result Indicator	Share of regional, subregional and local energy efficiency plans including adapted measures for public building stock

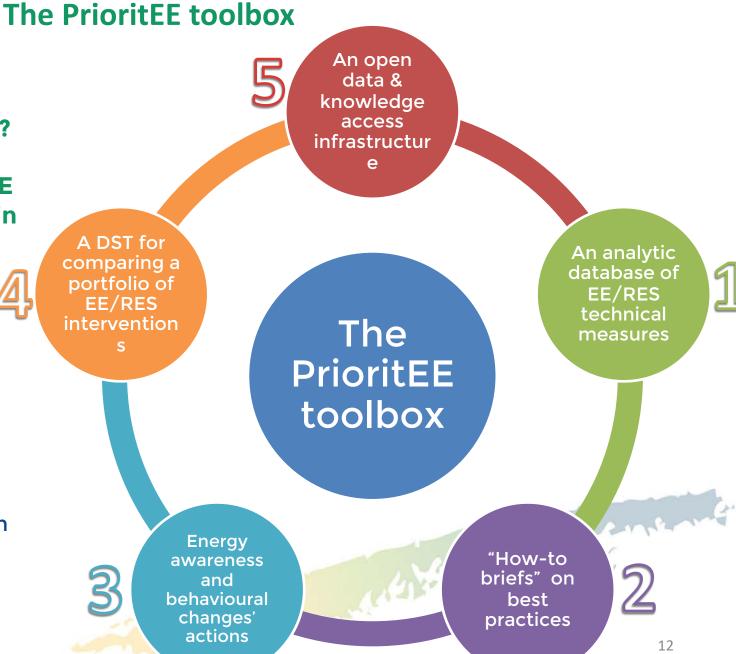
- Tools to manage and monitor energy consumption in public buildings
- Strategies to develop energy management plans for public buildings
- *Targets participating in capacity building activities
- ❖ Territories engaged in developing energy efficiency plans/strategies

WHY AND HOW

The overall aim of PrioritEE is to strengthen the policy making and strategic planning competences of local and regional public authorities in the energy management of public buildings in five Mediterranean countries: Italy, Portugal, Spain, Greece and Croatia.

KEY FIGURES

- Full title: Prioritize energy efficiency measures in public buildings: a decision support tool for regional and local public authorities


WHAT IS THE BEST VALUE FOR MONEY? or

WITH YOUR AVAILABLE BUDGET WHERE SHOULD YOU INVEST TO PROMOTE EE in MPB & LOWER ENERGY COSTS?

What for?

To promote EE and the use of RES in MPB and prioritize municipal Investments.

- transparent and objective evaluation of the investment opportunities (energy and CO2)
- multiple pathways available for local public administrators to achieve EE saving targets
- list of interventions per building labelled with an index of priority

Structure of the analytical database

PrioritEE Analytical Database Structure - Energy Efficiency and Renewable Energy Sources Measures

The state of the s

Database (per energy use)

11

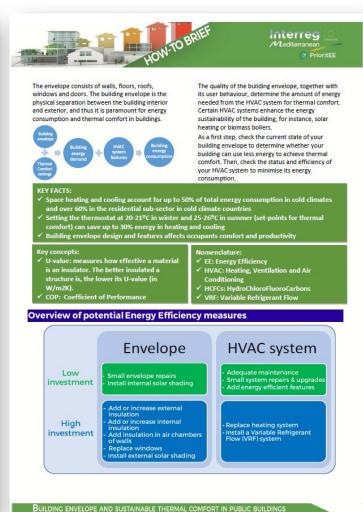
11 Characterization

Just an example (lighting)

		database of																						
M editerran	ean	EE/RES	Monure Title	Measure Code	Meavere Descripits no Typical Applications	Country	Building Typology	Building Sub Typology	Faul Type	Typical Size (W)	Culour Temperature (Ki	Colour Rendering Index (CRI)	Energy Efficiency (Lm/W)	Lifetime (heurs)	Average Annual Use (house/year)	Typical Daminated Area (m2)	Cost of Measure (Eur/kile- lemon)	Control Measure (Eurisail)	O&M Control (EurikWk)	Cost of Measure (Eur/W)	Cost of Measure (Eurim2) Workspace	Cost of Measure (Eurist2) Other	Examples of Equipment	Data Sources
<u>@</u>	PrioritEE	F	inagy efficient ighting in non- residential uildings (Fluo T5 hulb with ectonic hullint)	MLI	Offices, commercial buildings, and low hay industrial uses (feelow 5m)	Greece, Postugal; Spain; Creatio; Italy	Cultural Buildings; Schools; Office Buildings, Sports Facilities; Social Centers; Swimming Pouls	Small; Lorge	Bostrical Energy	6-80	2800-6500	80-85	72	32000	750		N/A	6.50			11,50	6,50	ecce.	IEA ETSAP (2012), REGEA Tool (2017)
		3	nongy efficient ghting in non- residential uildings (Fluo ib with ic bullant)	ML2	Offices, commercial buildings, and low buy industrial uses (bulow 5m)	Grocce; Poetagal; Spain; Croatia; kuby	Cultural Buildings: Schools; Office Buildings; Sports Facilities; Social Centers; Swimming Pools	Small; Lorge	Electrical Energy	16-70	2700-6500	80-85	80	36000	756		N/A	10,50					6	IEA ETSAP (2012); REGEA Tool (2017)
Measure Title	Measure Code	Description/ Typical	officient g in non- lential gs (High : Sodium)	ML3	High boy mass, flood lighting, street lighting, etc., that need to be lit- for a long periods	Greece; Portugal; Spain; Creatia; Judy	Cultural Buildings; Schools; Office Buildings, Sports Facilities; Social Centers; Swimming Pools	Small: Lorge	Electrical Energy	30-400	2000	25	84	20250	750		N/A	16,50					*	IEA ETSAP (2012): REGEA Taul (2017)
	Couc	Applications	efficient g in non- lential gx (Metal	ML4	Commercial uses with good colour endering: high buy meas (indoor space with high	Grocce: Portugal; Spant; Crustia;	Cultural Buildings: Schools; Office Buildings, Sports Facilities: Social	Small; Large	Bestrical Energy	70-400 (Up to 1000 W available)	3000-6000	65.96	88.5	13000	756		NA	30,50						IEA ETSAP (2012); REGEA Tool (2017)
Energy efficient	Energy efficient	Offices, commercia	(Lamps)		coding), foodlighting, extental lighting. A variety of	Indy Grocce: Portugal:	Content; Swimming Pools Cultural Buildings; Schools; Office			SK ALLEN W.)														IEA ETSAP
lighting in non- residential buildings M.L.1 (Fluo T5 bulb with electronic ballast)	buildings, and low bay industrial uses (below 5m)	J gs (LED El (=40)) S efficient	M.L.5	different applications	Spain; Creatis; Italy	Buildings, Sports Facilities: Social Centers; Swimming Pools Cultural Buildings;	Small; Large	Electrical Energy	1-16	2800-6500	<40	127,5	31000	750		13/0	N/A			32,00	22,00	-	(2012); CLTC (2015); REGEA Tool (2017)	
		CRL(41- 5))	M1.6	A variety of different applications	Poetugal; Spain; Creatia; kuly	Schoole; Office Buildings, Spotts Facilities; Social Centers; Swimming Pools	Smill; Large	Beetrical Energy	1-16	2800-6500	41-75	118,5	31000	750		20,8	N/A			32,66	22,00	8	IEA ETSAP (2012); CLTC (2015); REGEA Tuol (2017)	
Energy efficient			efficient in non- ential gs (LED 1 (76-90))	56.1.7	A variety of defferent applications	Grocce: Portugal; Span; Crustia; Italy	Cultural Buildings: Schools; Office Buildings: Sports Facilities; Social Centers; Swimming Pools	Small; Large	Biotrical Energy	1-16	2800-6500	76-90	107,1	31000	759		32,7	N/A	5		32,00	22.00	1	IEA ETSAP (2012); CLTC (2015); REGEA Tool (2017)
lighting in non- residential buildings	ghting in non- dential buildings M.L.2	Offices, commercia buildings, and low bay industrial uses	lential ign (LED	ML8	A variety of different applications	Greece; Postugal; Spain; Creatio; Italy	Cultural Buildings; Schools; Office Buildings, Sports Facilities; Social Centers; Swimming Pools	Small; Lorge	Hestrical Energy	146	2800-6500	91-100	91.6	31000	750		52,8	N/A			32,00	22,00	6	EA ETSAP (2012), CLTC (2015), REGEA Tool (2017)
(Fluo T8 bulb with electronic ballast)	(below 5m)	efficient g in non- lential gx (OLED t1 (<40))	ML9	A variety of different applications	Grosse: Portugal; Spain; Creatie; Inly	Cultural Buildings; Schools; Office Buildings, Sports Facilities; Succial Centers; Swimming Pools	Small; Larger	Electrical Energy	1-16	2800-6500	<40	122,6	31000	750		19	N/A			32,00	22,00	D	IEA ETSAP (2012), REGEA Tool (2017)	
lighting in non- residential buildings M.L.3	High bay areas, floo lighting, street lighting, etc., that	pr (OLED CR1(41-	ML10	A variety of different applications	Greece: Purtugal; Spain; Creatia; kaly	Cultural Buildings; Schoole; Office Buildings, Sports Facilities; Social Centers; Swimming Pouls	Smill; Lugs	Electrical Energy	1-16	2800-6500	41-75	107.7	31000							32,00	22,00	1	IEA ETSAP (2012): REGEA Taol (2017)	
	need to be lit for a	need to be lit for	ential px (OLED 1 (76-90))	MLII	A variety of different applications	Greece; Poetugal; Spain; Creatin; Indy	Cultural Buildings; Schools; Office Buildings, Sports Facilities; Social Centers; Swimming Pools	Small; Large	Electrical Energy	1-16	2800-6500	76-96	91,6	31000		Ligh	nting	,			32,00	22,00	No.	IEA ETSAP (2012), REGEA Tool (2017)
João Pedro Gouveia		h	efficient ghting in non- neidential ablings (OLED ry high CRI (91 100))	M.L.12	A variety of different applications	Grace; Portugal; Spain; Creatia; Italy	Cultural Buildings; Schools; Office Buildings, Sports Facilities; Social Centers; Swimming Pools	Small; Large	Electrical Energy	1-16	2800-6500	91-100	26	31000				4	V		32,00	22,00	0	EA ETSAP (2012); REGEA Tool (2017)

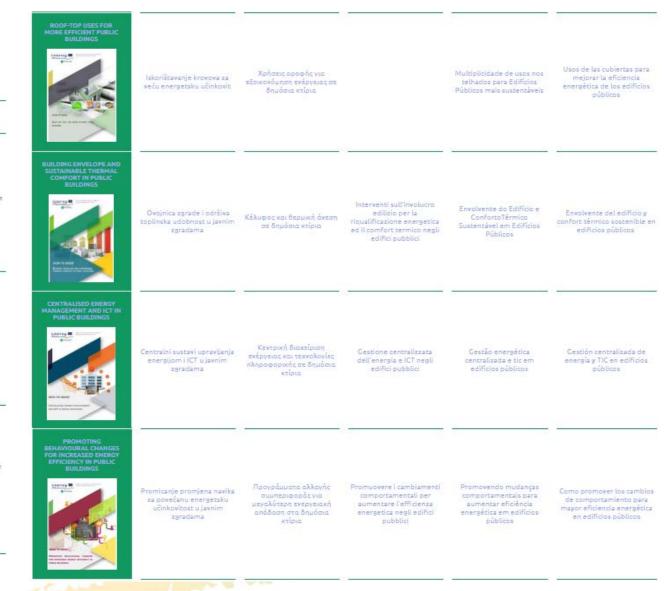
How-to Briefs



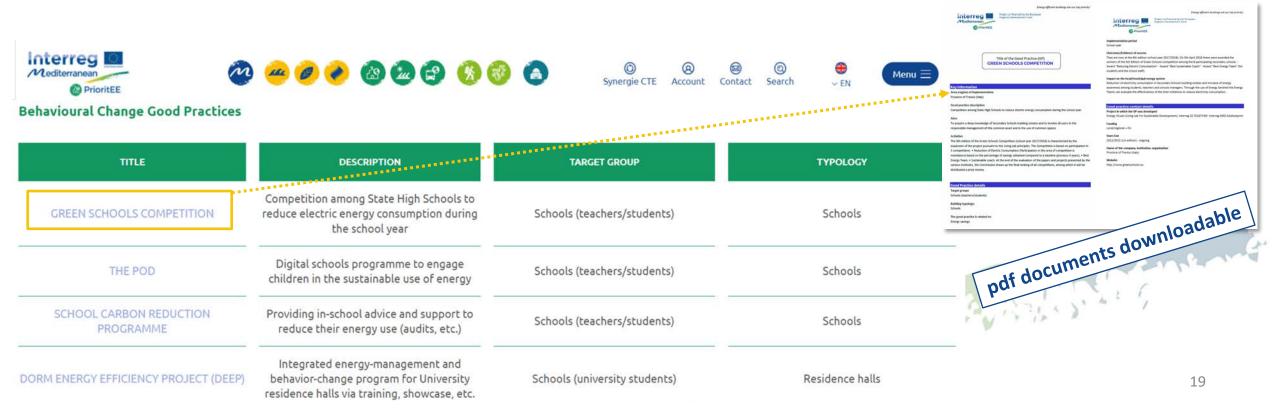

- 1. Engaging the stakeholders
- 2. Creating a Sustainable Energy Action Plan
- 3. Innovative financing of energy efficiency measures in public buildings
- 4. Roof-top uses for more efficient public buildings
- 5. Building envelope and sustainable thermal comfort in public buildings
- 6. Promoting behavioural changes for increased energy efficiency in public buildings
- 7. Centralised energy management and ICTs in public buildings

How-to briefs

Associated Partners:

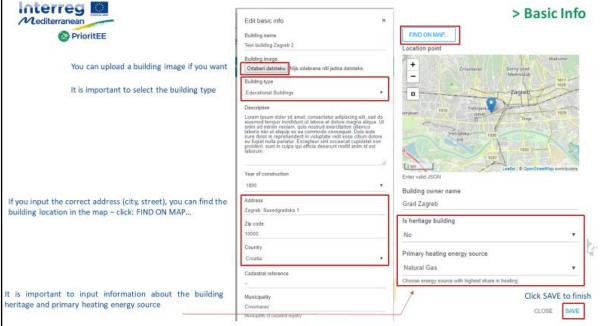

For additional information please visit: https://prioritee.interreg-med.eu

XK	-8-		-	*	<u>s</u>
ENGAGING STAKEHOLDERS	Uključivanje dionika	Ενθαρρύνοντας τη συμμετοκή των ενδιαφερόμενων μερών στη βελτίωση της ενεργειωκής απόδοσης των δημάσνων κτιρίων	Il coinvolgimento dei portatori d'interesse per il miglioramento della 33 y efficienza energetica degli edifici pubblici	Envalvimento de Stakeholders	Involucrando a los grupos de Interés
CREATING A SUSTABNABLE ENERGY ACTION PLAN	lzrada održivog akcijskog plana energetske učinkovitosti	Δημιουργία αειφόρων ενεργειακών σχεδίων δράσης	Redazione di un piano d'Azione per l'energia sostenibile	Desenvolvimento de um plano de ação de energia sustentável	Creación de un plan de acción para la energía sostenible en edificion públicos
INNOVATIVE FINANCING OF ENERGY EFFICIENCY MEASURES IN PUBLIC SUILDINGS	Inovativno financiranje mjera energetske ucinkovitosti u javnim ugrađama	Καινοτόμες χρηματοδοτήσεις μέτρων ενεργειακής απόδοσης σε δημόσια κτίρια	Finanziamento innovativo delle misure di efficienza energetica negli edifici pubblici	Financiamentos inovadores para medidas de eficiência energética em edificios públicos	Financiación innovadora de medidas de eficiencia energética en edificios públicos


How-to Briefs

> Good Practices for changing behaviour

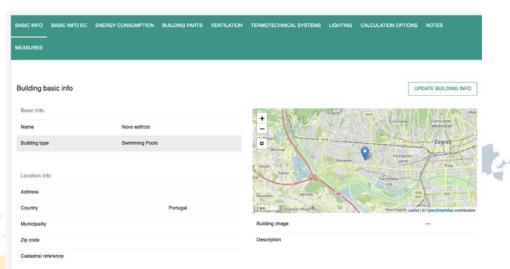
- 24 practices
- Schools, residence halls, City Hall, Sports Centre, Fire fighters buildings, social housing
- Schools (teachers/students); Householders; community, social housing tenants; Citizens, Local authorities
- Competitions, games, advices, information campaigns, economic incentives, monitoring systems, Voluntary certification scheme, networks and partnerships (...)



Decision Support Tool A decision support tool (DST) has a purpose of heighty for every found financial) savings by applying energy efficiency measures in public buildings. A link to the PrioritEE website Press the Register button to create a new account or Login button if you already have an account Interregistry A link to the PrioritEE website Press the Register button to create a new account or Login button if you already have an account Interregistry A link to the PrioritEE website Press the Register button to create a new account or Login button if you already have an account Interregistry A link to the PrioritEE website Press the Register button to create a new account or Login button if you already have an account A link to the PrioritEE website A link to the REGEA website

> Decision-Support Tool

Translated into 6 languages (English, Italian, Portuguese, Greek, Croatian and Spanish)


Near 1000 municipal public buildings included.

Inputs for each building:

- Basic Information
- Energy Performance Certificate data
- Energy Consumption
- Building Components
- Ventilation
- Technical Systems
- Lighting
- Calculation options (prices, subsidies)

> Decision Support Tool

ADVANCED INPUTS

energy service

Describe energy consumption,

detailed building characteristics and

information per energy carrier, type of

CALCULATIONS

PRIORITEE

Calculate the impact of energy efficiency and RES measures and includes the support variables and coefficients that were assumed to support the calculations

MAIN RESULTS

per building and per type of measure.

Depicts main results and indicators

(i) two levels of inputs (basic and advanced)

- (ii) a country-specific data mode
- (iii) MPB building typologies based-structure.

BASIC INPUTS RESULTS RANKING

Select the country and input basic

building information - fill in at least

area of buildings, energy consumption

and typology

Presents customised ranking on the measures selected by building depending on the criteria selected.

> Main structure of the DST

COUNTRIES, BUILDINGS AND TECHNOLOGY SUPPORT DATA

Country Data presenting individual countries specific information (e.g. climate, energy prices); Building Typologies describing the main typologies default characteristics to be used in calculations; technology and measures database.

> Approach of using building typologies

Representative building typologies for each country

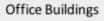
Simple to obtain information needs:

- Area
- Occupation schedules
- Number of users
- Construction type (insulation)
- Total energy consumption per energy carrier
- Split of energy consumption per energy service

Making use of energy certificates and energy audits data

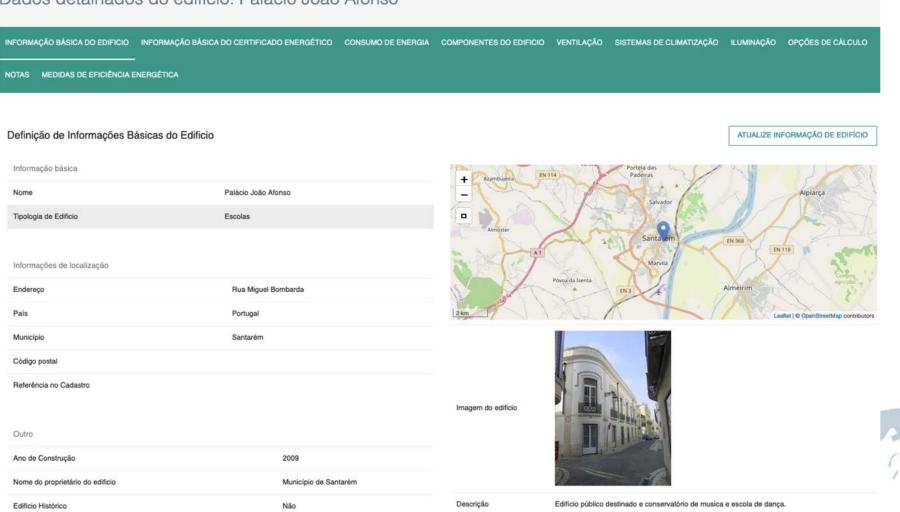
For the following energy services:

- Lighting
- **Space Heating**
- who have the second of the sec Space Cooling
- Hot water
- Solar PV



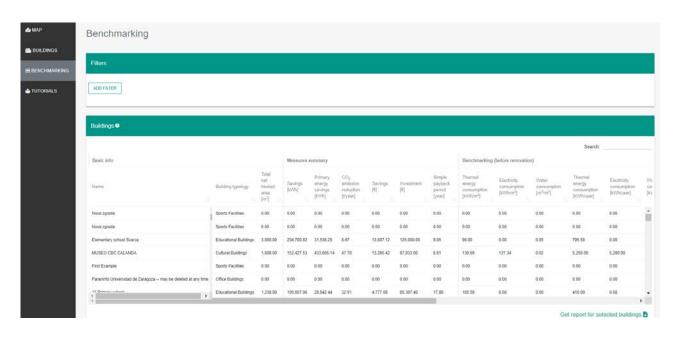
Sports Facilities

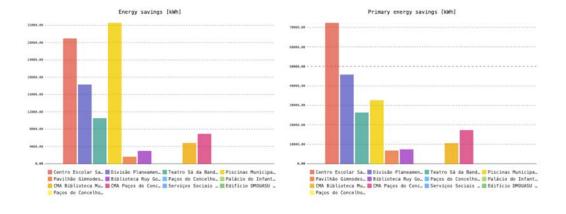
Schools

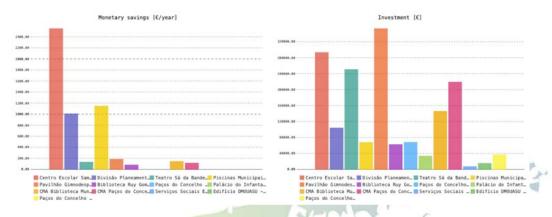

Swimming Pools

> Decision Support Tool

Dados detalhados do edifício: Palácio João Afonso






> Transferring the PrioritEE DST

Benchmarking offers a possibility for:

- Comparison of multiple selected buildings
- Extracting a report for selected buildings

• Tutorial for web-based application of the Decision Support Tool

From PrioritEE to PrioritEE PLUS

Prioritize energy efficiency measures in public buildings: a decision support tool for regional and local public authorities

01/02/2017 - 31/07/2019

1st call for modular projects

Transferring the PrioritEE Decision Support Tool to public authorities in the MED area

01/03/2021 - 30/06/2022

4th call for modular projects - restricted for transfer and mainstream projects

Partnership

SCIENTIFIC PARTNERS

FCT -NOVA University of Lisbon, Portugal

Universidad Zaragoza

University of Zaragoza, Spain

PUBLIC AUTHORITIES

3. SELNEG

National Laboratory of Energy and Geology, Portugal

Municipality of Narni, Italy

Aragonese Federation of Municipalities, Counties and Provinces, Spain

Portuguese Partners

- 2 local public authorities
- 2 Sectoral agency
- 1 Inter-municipal community

Giver APs

Municipality of Potenza (IT)

Società Energetica Lucana (IT)

Regional Development Agency of Western Macedonia SA - ANKO (EL)

CIMLT - Comunidade Intermunicipal da Lezíria do Tejo (PT)

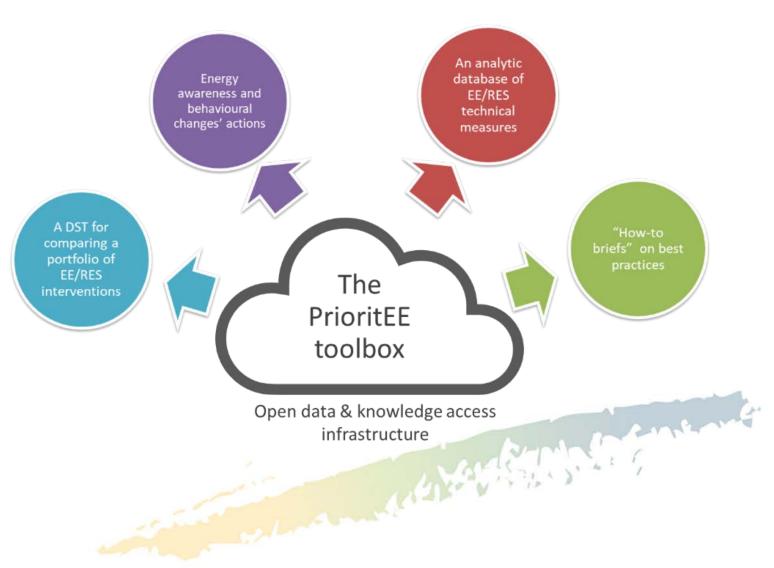
City of Karlovac (HR)

Associated Partners - AP

Receiver AP
I.T.S. Efficienza Energetica (IT)
EUROMED Cities Network/City of Nice (FR)
IREC - Institut de Recerca en Energia de Catalunya (ES)
C.S.P. Gestioni Termiche srl (IT)
CONFAPI Terni (Italian Confederation of Small and Medium Industries) (IT)
Ordine degli Ingegneri della Provincia di Terni (IT)
CAMARA MUNICIPAL DE ARRUDA DOS VINHOS (PT)
AREANA TEJO (PT)
DPT - Provincial Government of Teruel (ES)
RNAE - Associação das Agências de Energia e Ambiente (PT)
ENA – Agência de Energia e Ambiente da Arrábida (PT)
University of Basilicata (IT)

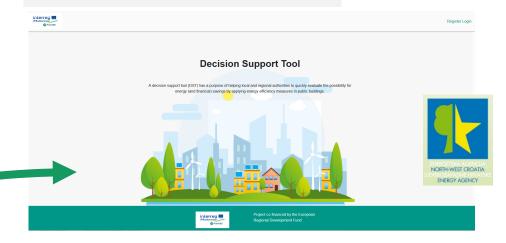
- 3 local public authorities
- 1 training centre
- 2 Higher education and research
- 1 Infrastructure and (public) service provider
- 2 Sectoral agency
- 1 Research and Academia
- 3 Other

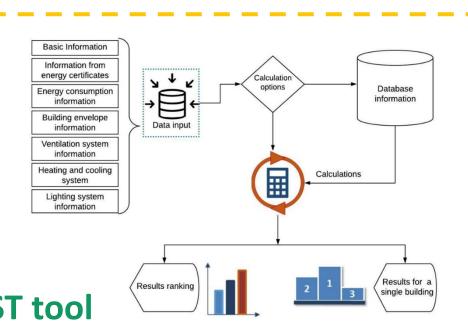
PrioritEE PLUS aims to improve, through transnational cooperation, the capacities of public authorities in the energy management of Public Buildings and in local sustainable energy planning.



The overall objective is to encourage the use of analytical tools to **support decision making** and the implementation of economically feasible and replicable technical solutions in the various territories of Mediterranean Europe.

PrioritEE main outputs





PrioritEE PLUS

What to transfer

The PrioritEE toolbox

infrastructure

An analytic database of EE/RES technical

- The web-based Decision Support Tool, available upon registration on the project web page
- It helps local and regional authorities to quickly and relatively easily evaluate the possibility for energy (and financial) savings by applying energy efficiency and RES measures in public buildings

The <u>transfer process</u> will be based on a structured capacity building program that involves local authorities, regional partners and key local actors, eliciting local specificities, supporting informed decisions on PBs renovation and leveraging the increasingly available information of energy performance certificates.

How to transfer

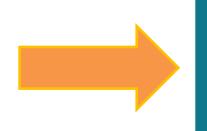
The commitment of "giver" and "receiver" partners will ensure a wider transfer of knowledge.

"Givers" will demonstrate the validity and usefulness of the DST and will assist the "Receivers" in its application.

Associated partners will also be a cornerstone for scaling and rolling out the DST at multiple levels.

On-line and **in-person** <u>capacity building activities</u> organized around the PrioritEE PLUS DST in a modular structure, with self-supporting chapters in online learning environments.

- **Training courses**, in local languages and in English, on a wide range of technical topics on building elements, EE solutions, energy economics, SECAP creation and funding application.
- Local study visits and Peer learning activities among partners and within the Efficient Buildings community to consolidate the cooperation network and support further initiatives


A wider audience will be also reached via the PrioritEE PLUS website, social media channels and semi-annual newsletters. **Conclusive thematic national seminars (webinars)** for the tool dissemination will involve national agencies, local authorities and other key stakeholders.

- <u>M.2.4.1</u> Case Study Reports (M7, September 2021)
 - Case Study Energy Efficiency Strategies (M16, June 2022)
- <u>M2.4.2</u> National Seminars (M12, Feb 2022)
- <u>M2.4.3</u> Memorandum of Understanding on Decision Support Tool Uptake by Local Public Authorities (M16, June 2022)

EBC ANNUAL CONFERENCE

15 JUNE 2021 10:00-12:00

PRIORITIZE ENERGY EFFICIENCY MEASURES IN PUBLIC BUILDINGS: THE PRIORITEE TOOLBOX 16 JUNE 2021

10:00-12:00

FINDING THE RIGHT
INCENTIVE: SISMA SET TOOL
FOR THE BANKABILITY OF
REFURBISHMENT PROJECTS

17 JUNE 2021

10:00-12:00

ENERGY EFFICIENCY IN SCHOOLS' BUILDINGS: TOOLS FOR ENERGY PERFORMANCE ANALYSIS

Obrigado!!

João Pedro Gouveia, FCT-NOVA

PRIORITEE PLUS

https://prioritee.interreg-med.eu/

